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I. INTRODUCTION

Consider autonomous discrete dynamic systems represented by the following

set of difference equations:
y(T) = £(y(T-1), ..., y(T-L), ¢) , (L)

where L is the maximum order of an equatioﬁ, y(T) is a (K x 1) vector, f is
a (K x 1) vector function, § is a parameter, K= 1, L> 1, and T is time. For
4 =1, ..., L, define fz = dy(T)/dy(T-£) as the (K X K) gradient matrices of
(1) with respect to various lagged vectors of variables.

The stability analysis of the higher-order system in (1) requires the
standard step of transforming it into a first-oxder system, z(T) = g(z(T-1)),
where z(T) is a (KL X 1) vector, and g is a (KL x 1) vector function. A

"companion” matrix to system (1), defined as A = 3z(T)/3z2(T-1), is

gl g2 . gl 4L
I, o ... o. o0
A = .K K K K , (2)
o 0 o g O |

where IK is an identity matrix of order (K x K), and 0K is a null matrix of

order (K X K). Denote the characteristic polynomial of A by

KL + ¢ AKL_I + ... +c . ' 3

PA) = [AL, - A| =2 1 KL

‘Let a steady-state of (1) be denoted by the (K x 1) vector x; thus, x
satisfies the relationship
x = f(x, ..., x, 8) . (4)

Throughout this note we will assume that A has been evaluated at the steady-

state in question. Let r(A) denote the spectral radius of A; that is, the



maximum absolute value of the eigenvalues of A. Then the property
r(a) <1 (5

is important for the following well-known reasons: (i) If system (1) is
linear, then property (5) is necessary and sufficient for there to be a unique
steady-state that is asymptotically stable. (ii) If system (1) is non-linear,
then (5) is a sufficient condition for the asymptotic stability of a steady-
state of (1); a necessary condition is r(A) <1 [1, p. 38]. When (1) is non-
linear, an asymptotically stable steady-state with r(A) = 1 can arise in
principle (this is called the non-hyperbolic case); however, it is extremely
rare in the sense explained in [2, p. 157] and [3, pp. 19-20].

The classical Schur-Cohn criteria provide a set of necessary and suffi-
cient conditions for (5) to hold. Among these are the following two neéessary

criteria, which are of interest for the present note:

p(1) >0 and (-1)Xp¢-1) >0 . (6)

See [1, p. 27] for the other necessary criteria. These other criteria, along
with those in (6), are tﬁgether sufficient for (5) to ﬁold.

It is apparent from (2) and (3) that it is nearly impossible to discern a
transparent connection between the gradient matrices fj and the criteria in
(6). Also, the criteria in (6) are tedious to verify.

The contribution of this note is as follows. The theorem in the next
section shows that the criteria in (6) can be stated directly in terms of the
gradient matrices f£ of the original higher-order system. This alternative
statement is not only easier to test than (6), but it also permits us to see
the restrictions that (6) imposes on the gradient matrices fz. Moreover, the
theorem yields some useful information for the sensitivity study of the stable

steady-states of (1). These aspects, concerning the practical value of the



theorem, are illustrated in Section III.
The proof of the theorem, as well as of the lemma on which it depends, is
straightforward. However, based on an extensive literature search, I believe

that these or similar results have not previously been reported.

II. RESULTS
KL -2.8
Lemma: |,\1KL - Al = a1, - ? XTE|, for A0 . (7)
Proof: From (2), IAIKL - Al -
1 L-1 L
M - £ .. f -f
-, .. 0 0
: (8)
0 AL, 0
0 - ALy

In (8), multiply each of the last K columns by 1/), and add these columns
respectively to the preceding K columns. That is, for k = 1 to K:

(i) multiply column (L-1)K + k by 1/X, and (ii) add the resulting column to

column (L-2)K + k. This yields: IAIKL -aA| =
1 -1 , 1L 1L
AIK - f .. o =(f + Xf ) - Kf
. -Ip . 0 0
A : - (9)
0 AL, 0
0 0 I
1 -2 -1 , 1L
AL - f ~f —(£7 + 3£
. -1y . 0 0
A : . (10)
0 AL, 0
0 -y AL,




(To obtain (10) from (9), expand the determinant in (9) along the last row.
The last row and and the last column drop out. Repeat this K-1 times.)

A repetition of all preceding steps, L-1 times, yields the desired
. AK(L-l)l*IK 1-2_2

KL -2_2
result: |AL,, - Al - ? SR A B S b ? b Nt I o

Theorem: The criteria in (6) can be stated respectively as

- 2(—1)£f£| >0 . (11) .
y;

£
]IK - i f l > 0 and lIK

Proof: Since p(X) = lAIKL - A|, (6) can be rewritten as

KL, -a]l >0 . (12)

|1 KL

KL~ A| >0 and (-1)

Next, substitute A = 1 and -1, respectively, into (7). The resulting expres-

sions imply that (12) can be restated as (11). m|

III. REMARKS AND EXAMPLES

It is clear that though the conditicns in (11) are the exact equivalents
of the Schur-Cohn criteria in (6), the former are transparent and directly
observable restrictions on the gradient matrices fz.

Two brief examples are presented below. The first example illustrates
how the theorem presented above makes it easier to test the criteria in (6).
The second example shows how this theorem yields useful information for the
sensitivity analysis of the stable steady-states of (1). 1In these examples,
the elements of the vectors y(T) and x are denoted respectively as
y(T) ; (yl(T), ey yK(T)) and x = (xl, cey xK).

Example 1. Consider the following non-linear system, with K = L = 2 :

(D = (T = 1% + y,(T = 1) +y,(T-2) , and

Yo(I) =y (T = 1) + By, (T = 2) , (13)

where B is a real constant. The gradient matrices of (13), evaluated at a



steady-state X, are:

o - and f~ = . (14)

It is easily ascertained that system (13) has only two steady-states; they are
x = (0,0), and x = (~(1 + 8)/(1 - B), =(1 + p)/(1 - B2).

Suppose we are interested in determining the values of 8 for which the
steady-state x = (0,0) satisfies the criteria in (6). A direct use of (6)
would first require constructing a (4 X 4) matrix A, as defined in (2), and
then solving for the values of B that satisfy the inequalities in (6). 1In
contrast, the theorem presented earlier allows the following simpler calcula-

tion. From (14),

1-2x% -2 1+2x% 0
I, -5t - and 12—2(-1)£f£- 1
2 -1 1-8 2 1 1-8

It then follows by inspection that the conditions in (11) are satisfied at
x = (0,0) if and only if 8 < -1. It can be similarly verified that at
x=(-(1+ 8)/1 - B, —(1 + B)/(1 - 5)2), the corresponding restriction is
-1/3 > g > -1,

Example 2. Consider the sensitivity analysis of an asymptotically stable
steady-state x with respect to a scalar parameter §. Recalling the reasons

noted in Section I, we assume here that (5) is satisfied at x. From (4), the

effect of a small change in 6 is described by g% - [IK - F]—1 g§’ where
F=2 fl. This yields g? =D gg/llx - FI, where D denotes the adjoint matrix

y) .
of IK — F. From the first inequality in (11), therefore, sgn{%%) = sgn{D gg}.

Thus, by the theorem presented earlier, we need not be concerned about the
sign of IIK - F| when evaluating the signs of the vector g%. This useful

information is clearly unavailable from the criteria in (6).
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